Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides.

نویسندگان

  • Meng-Qiang Zhao
  • Qiang Zhang
  • Wei Zhang
  • Jia-Qi Huang
  • Yinghao Zhang
  • Dang Sheng Su
  • Fei Wei
چکیده

A chemical precursor mediated process was used to form catalyst nanoparticles (NPs) with an extremely high density (10(14) to 10(16) m(-2)), controllable size distribution (3-20 nm), and good thermal stability at high temperature (900 °C). This used metal cations deposited in layered double hydroxides (LDHs) to give metal catalyst NPs by reduction. The key was that the LDHs had their intercalated anions selected and exchanged by guest-host chemistry to prevent sintering of the metal NPs, and there was minimal sintering even at 900 °C. Metal NPs on MoO(4)(2-) intercalated Fe/Mg/Al LDH flakes were successfully used as the catalyst for the double helix growth of single-walled carbon nanotube arrays. The process provides a general method to fabricate thermally stable metal NPs catalysts with the desired size and density for catalysis and materials science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed ...

متن کامل

Two-Dimensional Layered Double Hydroxides for Reactions of Methanation and Methane Reforming in C1 Chemistry

CH₄ as the paramount ingredient of natural gas plays an eminent role in C1 chemistry. CH₄ catalytically converted to syngas is a significant route to transmute methane into high value-added chemicals. Moreover, the CO/CO₂ methanation reaction is one of the potent technologies for CO₂ valorization and the coal-derived natural gas production process. Due to the high thermal stability and high ext...

متن کامل

Facile assembly for fast construction of intercalation hybrids of layered double hydroxides with anionic metalloporphyrin.

Anionic manganese tetrasulfonatophenyl porphyrin (MnTSPP) has been intercalated into the interlamellar space of Mg-Al and Ni-Al layered double hydroxides (LDHs) through the exfoliation/restacking approach by using exfoliated LDH nanosheets and guest molecules as building blocks. The obtained hybrids were characterized by a variety of analytical techniques such as CHN analysis, XRD, FTIR, SEM, H...

متن کامل

Layered double hydroxides: Novel nanocatalysts for combustion of gaseous toluene from polluted air

The catalytic performance of Ni-Al, Mg-Al, and Co-Ni LDHs as novel nanocatalysts was evaluated in the oxidation of toluene. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The XRD and FTIR approved the structure and functional groups of the LDH, respectively. Also, the presence of cations with dif...

متن کامل

Controllable Nanocage Structure Derived from Cyclodextrin-Intercalated Layered Double Hydroxides and Its Inclusion Properties for Dodecylbenzene

A novel nanocage structure derived from carboxymethyl-cyclodextrins (CMCDs) intercalated in layered double hydroxides (LDHs), whose gates can be controlled by the process of swelling/drying the CMCD-LDH, has been prepared. Furthermore, the extent of opening of this nanocage structure can be controlled by swelling in different solvents. Dodecylbenzene (DDB) as the guest molecule has been incorpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 132 42  شماره 

صفحات  -

تاریخ انتشار 2010